**2.1 Likelihood** slide 60

#### Likelihood

 $\square$  We now suppose that the data are provisionally believed to come from a parametric model  $f_Y(y;\theta)$  for which  $\theta$  lies in  $\Theta \subset \mathbb{R}^d$ .

 $\Box$  Given observed data y, the likelihood and the log likelihood are

$$L(\theta) = f_Y(y; \theta), \quad \ell(\theta) = \log f_Y(y; \theta), \quad \theta \in \Theta;$$

we regard these as functions of  $\theta$  for fixed y. The log likelihood is often more convenient to work with because if y consists of independent observations  $y_1, \ldots, y_n$ , then

$$\ell(\theta) = \log f_Y(y; \theta) = \log \prod_{j=1}^n f(y_j; \theta) = \sum_{j=1}^n \log f(y_j; \theta), \quad \theta \in \Theta,$$

so laws of large numbers and other limiting results apply directly to  $n^{-1}\ell(\theta)$ .

☐ Comments:

- the posterior density based on data y and prior  $f(\theta)$  is proportional to  $L(\theta) \times f(\theta)$ ;
- the formula for  $\ell(\theta)$  is readily extended for example, if  $y_1, \ldots, y_n$  are in time order, then

$$\ell(\theta) = \sum_{j=2}^{n} \log f(y_j \mid y_1, \dots, y_{j-1}; \theta) + \log f(y_1; \theta).$$

stat.epfl.ch Autumn 2024 – slide 61

Likelihood quantities

 $\square$  The maximum likelihood estimate (MLE)  $\widehat{\theta}$  satisfies

 $\ell(\widehat{\theta}) \ge \ell(\theta)$  or equivalently  $L(\widehat{\theta}) \ge L(\theta)$ ,  $\theta \in \Theta$ .

 $\Box$  Often  $\widehat{\theta}$  is unique and satisfies the score (or likelihood) equation

$$\nabla \ell(\theta) = \frac{\partial \ell(\theta)}{\partial \theta} = 0,$$

interpreted as a  $d \times 1$  vector equation if  $\theta$  is a  $d \times 1$  vector.

☐ The observed information and expected (Fisher) information are defined as

$$\jmath(\theta) = -\nabla^2 \ell(\theta) = -\frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta^{\mathrm{T}}}, \quad \imath(\theta) = \mathrm{E}\left\{\jmath(\theta)\right\};$$

these are  $d \times d$  matrices if  $\theta$  has dimension d and otherwise are scalars.

 $\square$  To evaluate  $\imath(\theta)$  we replace y by the random variable Y and take expectations.

**Example 27 (Exponential family)** Find the likelihood quantities when  $Y_1, \ldots, Y_n$  is a random sample from a (d, d) exponential family.

stat.epfl.ch

 $\square$  The density for a single observation is

$$f(y;\theta) = m(y) \exp\left\{s^{\mathrm{T}} \varphi - k(\varphi)\right\} = m(y) \exp\left[s^{\mathrm{T}} \varphi(\theta) - k\{\varphi(\theta)\}\right], \quad \theta \in \Theta, y \in \mathcal{Y},$$

where s = s(y), so the corresponding log likelihood based on  $y_1, \ldots, y_n$  is

$$\ell(\theta) = \sum_{j=1}^{n} \log f(y_j; \theta) \equiv \sum_{j=1}^{n} s_j^{\mathrm{T}} \varphi(\theta) - nk \{ \varphi(\theta) \} = s^{\mathrm{T}} \varphi(\theta) - nk \{ \varphi(\theta) \}, \quad \theta \in \Theta,$$

where  $s = \sum_{j} y_{j}$  and  $\equiv$  means that we have dropped additive constants from the log likelihood.

□ If  $\nabla$  denotes gradient with respect to  $\theta$  and  $k_{\varphi}$  and  $k_{\varphi\varphi}$  denote the gradient and Hessian matrix of k with respect to  $\varphi$ , then the score equation is

$$\nabla \varphi(\theta)^{\mathrm{T}} s - n \nabla \varphi(\theta)^{\mathrm{T}} k_{\varphi} \{ \varphi(\theta) \} = 0,$$

so if the  $d \times d$  matrix  $\varphi(\theta)^{\mathrm{T}}$  is invertible (which is the case for a smooth 1-1 transformation), then the MLE  $\widehat{\varphi}$  satisfies  $k_{\varphi}(\widehat{\varphi}) = \overline{s} = s/n$  (note that  $\mathrm{E}(S/n) = k_{\varphi}(\varphi)$ , so  $\widehat{\varphi}$  is also a moments estimate), and therefore  $\widehat{\theta} = \varphi^{-1}(\widehat{\varphi})$ .

☐ To compute the observed information we write the likelihood derivatives as

$$\frac{\partial \varphi_t}{\partial \theta_r} s_t - n \frac{\partial \varphi_t}{\partial \theta_r} \frac{\partial k(\varphi)}{\partial \varphi_t}, \quad r = 1, \dots, d,$$

using the Einstein summation convention that implies summation over repeated indices (here t), and then differentiate with respect to  $\theta_u$  to obtain

$$j(\theta)_{r,u} = -\frac{\partial^2 \varphi_t}{\partial \theta_r \partial \theta_u} s_t + n \frac{\partial^2 \varphi_t}{\partial \theta_r \partial \theta_u} \frac{\partial k(\varphi)}{\partial \varphi_t} + n \frac{\partial \varphi_t}{\partial \theta_r} \frac{\partial \varphi_v}{\partial \theta_u} \frac{\partial^2 k(\varphi)}{\partial \varphi_t \partial \varphi_v}, \quad r, u = 1, \dots, d.$$

Note that

- if  $\varphi(\theta) \equiv \theta$ , i.e., the exponential family is in canonical form, then  $\nabla \varphi(\theta) = I_d$  and the second derivatives are zero, so this entire expression reduces to  $n\nabla^2 k(\varphi)$ , which is non-random;
- $E(S_t) = n\partial k(\varphi)/\partial \varphi_t$ , so in any case

$$i(\theta) = n \nabla \varphi(\theta)^{\mathrm{T}} k_{\varphi\varphi} \{ \varphi(\theta) \} \{ \nabla \varphi(\theta)^{\mathrm{T}} \}^{\mathrm{T}} ;$$

the MLE satisfies the score equation, so the observed information at the MLE is

$$\jmath(\widehat{\theta}) = n \nabla \varphi(\widehat{\theta})^{\mathrm{T}} k_{\varphi \varphi} \{ \varphi(\widehat{\theta}) \} \left\{ \nabla \varphi(\widehat{\theta})^{\mathrm{T}} \right\}^{\mathrm{T}}.$$

stat.epfl.ch

#### Invariance

- ☐ We prefer inferences to be invariant to (smooth) 1–1 transformations of data and/or parameter.
- □ If Z = z(Y) is a 1–1 function of a continuous variable Y and the transformation does not depend on  $\theta$ , then  $f_Z(z;\theta) = f_Y\{y^{-1}(z);\theta\}|dy/dz|$ , so

$$\ell(\theta; z) = \log f_Z(z; \theta) \equiv \ell(\theta; y) = \log f_Y(y; \theta),$$

where  $\equiv$  means that an additive constant not depending on  $\theta$  has been dropped — hence likelihood inference is the same whether we use Y or Z.

 $\Box$  Likewise a smooth 1–1 transformation from  $\theta$  to  $\varphi(\theta)$  will give

$$\tilde{f}(y;\varphi) = \tilde{f}\{y;\varphi(\theta)\} = f(y;\theta),$$

where the tilde denotes the density expressed using  $\varphi$ . Clearly

$$\tilde{f}(y;\widehat{\varphi}) = \tilde{f}\{y;\varphi(\widehat{\theta})\} = f(y;\widehat{\theta}), \quad \jmath(\widehat{\theta}) = \left. \frac{\partial \varphi^{\mathrm{T}}}{\partial \theta} \tilde{\jmath}(\varphi) \frac{\partial \varphi}{\partial \theta^{\mathrm{T}}} \right|_{\varphi = \varphi(\widehat{\theta})},$$

so the maximum likelihood estimates satisfy  $\widehat{\varphi} = \varphi(\widehat{\theta})$ . This implies that we can optimise  $\ell$  in a numerically convenient parametrisation,  $\varphi$ , say, and then transform to  $\theta$ .

stat.epfl.ch Autumn 2024 – slide 63

### Interest and nuisance parameters

- $\square$  In most cases  $\theta = (\psi, \lambda)$ , where the
  - (low-dimensional, often scalar) interest parameters  $\psi$  represent targets of inference with direct substantive interpretations;
  - (maybe high-dimensional) **nuisance parameters**  $\lambda$  are needed to complete a model specification, but are not themselves of main concern.
- $\Box$  Ideally inference on  $\psi$  should be invariant to interest-respecting (or interest-preserving) transformations

$$\psi, \lambda \mapsto \eta = \eta(\psi), \zeta = \zeta(\psi, \lambda).$$

- $\square$  For example, if  $X\sim \mathcal{N}(\mu,\sigma^2)$  then the log-normal variable  $Y=\exp(X)$  has mean  $\psi=\exp(\mu+\sigma^2/2),$  and
  - confidence intervals for  $\psi$  should be the same whether the nuisance parameter  $\lambda$  is chosen as  $\mu$  or  $\sigma^2$  or  $\mu \sigma^2/2$  or . . . ;
  - if (L, U) is a confidence interval for  $\psi$ , then a confidence interval for  $\log \psi$  should be  $(\log L, \log U)$ .
- ☐ Later we will try to construct likelihoods that depend only on the interest parameters.

#### Overview

 $\square$  In theoretical discussion we glibly write something like

"Let 
$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} f(y; \theta) \ldots$$
"

but in applications this cannot be taken for granted.

- □ Ideally we can ensure random sampling and full measurement of observations from a well-specified population, but if not, possible complications include:
  - selection of observations based on their values;
  - censoring;
  - dependence;
  - missing data.
- $\square$  We now briefly discuss these ...

stat.epfl.ch Autumn 2024 – slide 66

### Selection

☐ If the available data were selected from a population using a mechanism expressible in probabilistic terms, then the likelihood is

$$P(Y = y \mid \mathcal{S}; \theta),$$

where S is the selection event. If S is unknown or not probabilistic, only sensitivity analysis is possible (at best).

 $\square$  A common example is **truncation** of independent data, where  $S_j = \{Y_j \in \mathcal{I}_j\}$  for some set  $\mathcal{I}_j$ , giving likelihood

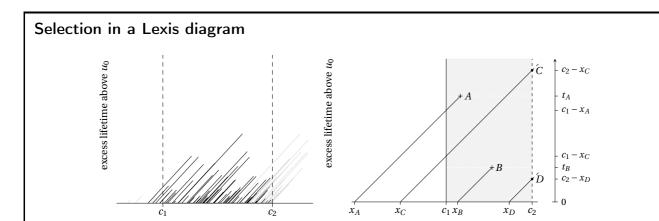
$$\prod_{j=1}^{n} f(y_j \mid y_j \in \mathcal{I}_j; \theta).$$

**Example 28** In certain demographic databases on very old persons, an individual born on calendar date x is included only if they die aged  $u_0 + t$ , where  $u_0$  is a high threshold (e.g., 100 years) and  $t \geq 0$ , between two calendar dates  $c_1$  and  $c_2$ . The likelihood contribution for this person is then of form

$$\frac{f(t)}{\mathcal{F}(a) - \mathcal{F}(b)}, \quad a < t < b, \qquad [a, b] = [\max(0, c_1 - x), c_2 - x],$$

where x is the calendar date at which they reach age  $u_0$ . See the next page.

stat.epfl.ch



Lexis diagrams showing age on the vertical axis and calendar time on the horizontal axis. Only ages over  $u_0$  are shown.

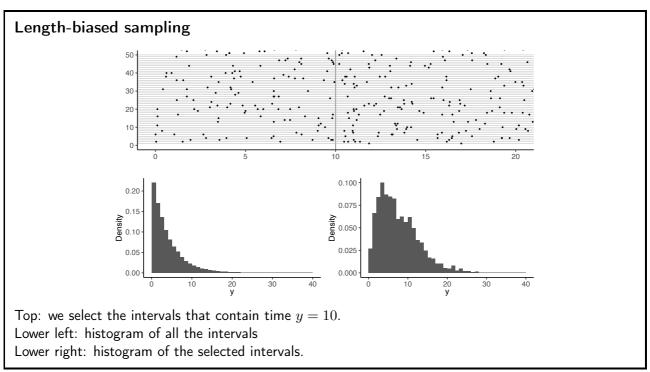
calendar time

Left: only the individuals with solid lines appear in the sample.

Right: explanation of the intervals for which different individuals are observed.

calendar time

stat.epfl.ch Autumn 2024 – slide 68



### Biased sampling

- ☐ Arises when the probability of selecting (sampling) an observation depends on its value.
- $\square$  If  $p(y) = P(S \mid Y = y)$  denotes the probability that an observation of size y is selected, then the density of a selected observation is

$$f_{\mathcal{S}}(y) = f(y \mid \mathcal{S}) = \frac{P(\mathcal{S} \mid Y = y)f(y)}{P(\mathcal{S})} = \frac{p(y)f(y)}{\int p(y)f(y) \, dy}.$$

 $\square$  A common example, length-biased sampling, occurs when  $p(y) \propto y$ , giving

$$f_{\mathcal{S}}(y) = \frac{yf(y)}{\int xf(x) dx} = \frac{yf(y)}{\mu}, \quad y > 0,$$

say, and the mean length for the selected observations is not  $\mathrm{E}(Y)=\mu$  but

$$E(Y \mid \mathcal{S}) = \int y f_{\mathcal{S}}(y) dy = \int y^2 f(y) / \mu dy = \mu + \sigma^2 / \mu,$$

where  $\sigma^2 = var(Y)$  is the population variance.

☐ Many other types of biased sampling arise in medical and epidemiological studies, in sampling networks, and in other contexts.

stat.epfl.ch Autumn 2024 – slide 70

# Censoring

- Selection and truncation determine which observations appear in a sample, whereas censoring reduces the information available.
- ☐ Censoring is very common in lifetime data and leads to the precise values of certain observations being unknown:
  - **right-censoring** results in  $(T = \min(Y, b), D = I(Y \le b))$  for some b;
  - **left-censoring** results in  $(T = \max(Y, a), D = I(Y > a))$  for some a;
  - interval-censoring results in  $(Y, I(a < Y \le b))$ ,  $(a, I(Y \le a))$  or (b, I(Y > b)), or it is known only which of certain intervals  $\mathcal{I}_1, \ldots, \mathcal{I}_K$  contains Y.
- $\square$  Here the interval limits may be random, for simplicity are often taken to be independent of Y.
- $\square$  In each case we lose information when Y lies within some (possibly random) interval  $\mathcal{I}$ , often with the assumption that  $Y \perp \!\!\! \perp \mathcal{I}$ .
- Rounding is a form of interval censoring, and we have already seen (exercises) that little information is lost if the rounding is not too coarse.
- $\square$  Likelihood contributions based on right- and left-censored observations are

$$f_Y(t)^d \{1 - F_Y(t)\}^{1-d}, \quad f_Y(t)^d \{F_Y(t)\}^{1-d}.$$

☐ Truncation and censoring can arise together; see the Lexis diagram.

# Dependent data

 $\square$  If the joint density of  $Y=(Y_1,\ldots,Y_n)$  is known, then the prediction decomposition

$$f(y;\theta) = f(y_1, \dots, y_n; \theta) = f(y_1; \theta) \prod_{j=2}^{n} f(y_j \mid y_1, \dots, y_{j-1}; \theta)$$

gives the density (and hence the likelihood).

This is most useful if the data arise in time order and satisfy the Markov property, that given the 'present'  $Y_{j-1}$ , the 'future',  $Y_j, Y_{j+1}, \ldots$ , is independent of the 'past',  $\ldots, Y_{j-3}, Y_{j-2}$ , so

$$f(y_i | y_1, \dots, y_{j-1}; \theta) = f(y_i | y_{j-1}; \theta)$$

and the product above simplifies to

$$f(y;\theta) = f(y_1;\theta) \prod_{j=2}^{n} f(y_j \mid y_{j-1};\theta).$$

☐ Many variants of this are possible.

Example 29 (Poisson birth process) Find the likelihood when  $Y_0 \sim \operatorname{Poiss}(\theta)$  and  $Y_0, \ldots, Y_n$  are such that  $Y_{j+1} \mid Y_0 = y_0, \ldots, Y_j = y_j \sim \operatorname{Poiss}(\theta y_j)$ .

stat.epfl.ch Autumn 2024 – slide 72

### Note to Example 29

Here

$$f(y_{j+1} \mid y_j; \theta) = \frac{(\theta y_j)^{y_{j+1}}}{y_{j+1}!} \exp(-\theta y_j), \quad y_{j+1} = 0, 1, \dots, \quad \theta > 0.$$

If  $Y_0$  is Poisson with mean  $\theta$ , the joint density of data  $y_0, \dots, y_n$  is

$$f(y_0; \theta) \prod_{j=1}^{n} f(y_j \mid y_{j-1}; \theta) = \frac{\theta^{y_0}}{y_0!} \exp(-\theta) \prod_{j=0}^{n-1} \frac{(\theta y_j)^{y_{j+1}}}{y_{j+1}!} \exp(-\theta y_j),$$

so the likelihood is

$$L(\theta) = \left(\prod_{j=0}^{n} y_j!\right)^{-1} \exp\left(s_0 \log \theta - s_1 \theta\right), \quad \theta > 0,$$

where  $s_0 = \sum_{j=0}^n y_j$  and  $s_1 = 1 + \sum_{j=0}^{n-1} y_j$ . This is a (2,1) exponential family.

stat.epfl.ch

# Missing data

- ☐ Missing data are common in applications, especially those involving living subjects.
- ☐ Central problems are:
  - uncertainty increases due to missingness;
  - assumptions about missingness cannot be checked directly, so inferences are fragile.
- $\square$  Suppose the ideal is inference on  $\theta$  based on n independent pairs (X,Y), but some Y are missing, indicated by a variable I, so we observe either (x,y,1) or (x,?,0).
- $\hfill\Box$  The likelihood contributions from individuals with complete data and with y missing are respectively

$$P(I = 1 \mid x, y) f(y \mid x; \theta) f(x; \theta), \quad \int P(I = 0 \mid x, y) f(y \mid x; \theta) f(x; \theta) dy,$$

and there are three possibilities:

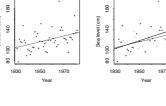
- data are missing completely at random,  $P(I = 0 \mid x, y) = P(I = 0)$ ;
- data are missing at random,  $P(I=0\mid x,y)=P(I=0\mid x)$ ; and
- non-ignorable non-response,  $P(I=0\mid x,y)$  depends on y and maybe on x.

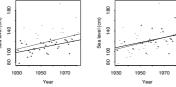
The first two are sometimes called **ignorable non-response**, as then I has no information about  $\theta$  and can (mostly) be ignored.

stat.epfl.ch Autumn 2024 – slide 73

### Example

Missing data in straight-line regression. Clockwise from top left: original data, data with values missing completely at random, data with values missing at random — missingness depends on x but not on y, and data with non-ignorable non-response — missingness depends on both x and y. Missing values are represented by a small dot. The dotted line is the fit from the full data, the solid lines those from the non-missing data.





#### Example

|           | Truth | Average estimate (average standard error) |             |             |             |  |
|-----------|-------|-------------------------------------------|-------------|-------------|-------------|--|
|           |       | Full                                      | MCAR        | MAR         | NIN         |  |
| $\beta_0$ | 120   | 120 (2.79)                                | 120 (4.02)  | 120 (4.73)  | 132 (3.67)  |  |
| $\beta_1$ | 0.50  | 0.49 (0.19)                               | 0.48 (0.28) | 0.50 (0.32) | 0.20 (0.25) |  |

□ Average estimates and standard errors for missing value simulation, for full dataset, with data missing completely at random (MCAR), missing at random (MAR) and with non-ignorable non-response (NIN) and non-response mechanisms

$$P(I = 0 \mid x, y) = \begin{cases} 0.5, \\ \Phi \{0.05(x - \overline{x})\}, \\ \Phi [0.05(x - \overline{x}) + \{y - \beta_0 - \beta_1(x - \overline{x})\} / \sigma]; \end{cases}$$

In each case roughly one-half of the observations are missing.

□ Data loss increases the variability of the estimates but their means are unaffected when the non-response is ignorable; otherwise they become entirely unreliable.

stat.epfl.ch Autumn 2024 – slide 75

#### Discussion

- Truncation, censoring and other forms of data coarsening are widely observed in time-to-event data and there is a huge literature on them, especially in terms of non- and semi-parametric estimation.
- ☐ Selection (especially self-selection!) can totally undermine analysis if ignored or if it can't be modelled.
- ☐ The Markov property plays a key simplifying role in inference based on time series, and generalisations are important in spatial and other types of complex data.
- $\square$  Missingness is usually the most annoying of the complications above:
  - it is quite common in applications, often for ill-specified reasons;
  - when there is NIN and a non-negligible proportion of the data is missing, correct inference requires us to specify the missingness mechanism correctly;
  - in practice it is hard to tell whether missingness is ignorable, so fully reliable inference is largely out of reach;
  - sensitivity analysis and or bounds to assess how heavily the conclusions depend on plausible mechanisms for non-response is then useful.

# Sufficiency

- ☐ When can a lot of data be reduced to a few relevant quantities without loss of information?
- A statistic S = s(Y) is sufficient (for  $\theta$ ) under a model  $f_Y(y;\theta)$  if the conditional density  $f_{Y|S}(y \mid s; \theta)$  is independent of  $\theta$  for any  $\theta$  and s.
- ☐ This implies that

$$f_Y(y;\theta) = f_S(s;\theta) f_{Y\mid S}(y\mid s), \quad \ell(\theta;s) \equiv \ell(\theta;y),$$

so we can regard s as containing all the sample information about  $\theta$ : if we consider Y to be generated in two steps,

- first generate S from  $f_S(s;\theta)$ , and
- then generate Y from  $f_{Y|S}(y \mid s)$ ,

and if the model holds, then the second step gives no information about  $\theta$ , so we could stop after the first step.

 $\Box$  The conditional distribution  $f_{Y|S}(y \mid s)$  allows assessment of the model without reference to  $\theta$ .

**Example 30 (Uniform model)** If  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} U(\theta)$ , find a sufficient statistic for  $\theta$  and say how to use  $f(y \mid s)$  to assess model fit.

stat.epfl.ch Autumn 2024 – slide 78

### Note to Example 30

 $\square$  The density is  $f(y;\theta) = \theta^{-1}I(0 < y < \theta)$ , so since the observations are independent, the likelihood is

$$L(\theta) = \prod_{j=1}^{n} \theta^{-1} I(0 < y_j < \theta) = \theta^{-n} I(0 < y_1, \dots, y_n < \theta) = \theta^{-n} I(0 < m < \theta), \quad \theta > 0,$$

where  $m = \max(y_1, \dots, y_n)$ ; note that  $\prod_j I(0 < y_j < \theta) = I(0 < m < \theta)$ . Clearly the likelihood depends on the data only through n and m, and as n is taken to be fixed, a sufficient statistic is  $M = \max y_j$ .

We have  $P(M \le m) = (m/\theta)^n$  for  $0 < m < \theta$ , so M has density  $nm^{n-1}/\theta^n$  for  $0 < m < \theta$ , but to compute the conditional density of the observations given M it is easiest to first compute that of the order statistics, i.e.,

$$f(y_1, \dots, y_{n-1}, m) = n!\theta^{-n}, \quad 0 < y_1 < \dots < y_{n-1} < m < \theta,$$

so the joint density of  $Y_{(1)}, \ldots, Y_{(n-1)}$  given M = m is

$$\frac{n!\theta^{-n}}{nm^{n-1}/\theta^n} = \frac{(n-1)!}{m^{n-1}}, \quad 0 < y_1 < \dots < y_{n-1} < m,$$

which is the density of the order statistics of a random sample of size n-1 from the U(0,m) density. Tests of fit will be based on this density, which does not depend on  $\theta$ .

stat.epfl.ch

### Minimal sufficiency

- $\square$  If S = s(Y) is sufficient and T = t(Y) is any other function of Y, then (S, T) contains at least as much information as S, and is also sufficient. Hence S is not unique.
- □ To deal with this we define a minimal sufficient statistic to be a function of any other sufficient statistic. Such a 'smallest sufficient statistic' is unique up to 1–1 maps.
- $\square$  To formalise this, note that
  - any statistic T=t(Y) taking values  $t\in\mathcal{T}$  partitions the sample space  $\mathcal{Y}$  into equivalence classes  $\mathcal{C}_t=\{y'\in\mathcal{Y}:t(y')=t\};$
  - the partition  $C_t$  corresponding to T is sufficient if and only if the distribution of Y within each  $C_t$  does not depend on  $\theta$ ; and
  - a minimal sufficient statistic gives the coarsest possible sufficient partition.
- ☐ We use the following results to identify (minimal) sufficient statistics.

**Theorem 31 (Factorisation)** A statistic S = s(Y) is sufficient for  $\theta$  in a model  $f(y; \theta)$  if and only if there exist functions g and h such that  $f(y; \theta) = g\{s(y); \theta\} \times h(y)$ .

**Theorem 32** If  $Y \sim f(y; \theta)$  and S = s(Y) is such that  $\log f(z; \theta) - \log f(y; \theta)$  is free of  $\theta$  if and only if s(z) = s(z), then S is minimal sufficient for  $\theta$ .

stat.epfl.ch Autumn 2024 – slide 79

#### Note to Theorem 31

- ☐ The result is 'if and only if', so we need to argue in both directions.
- $\square$  If S is sufficient, then the factorisation

$$f(y;\theta) = f\{s(y);\theta\} \times f(y \mid s) = g\{s(y);\theta\} \times h(y)$$

holds.

 $\square$  To prove the converse, suppose for simplicity of notation that Y is discrete and that there is a factorisation. Then S has density

$$f(s;\theta) = \sum_{y' \in \mathcal{Y}: s(y') = s} g\{s(y'); \theta\}h(y') = g(s;\theta) \sum_{y' \in \mathcal{Y}: s(y') = s} h(y'),$$

where the sum is in fact over  $y' \in \mathcal{C}_s$ . Thus the conditional density of Y given S = s = s(y) is

$$f(y \mid s; \theta) = \frac{g\{s(y); \theta\}h(y)}{g(s; \theta) \sum_{y' \in C_s} h(y')} = \frac{h(y)}{\sum_{y' \in C_s} h(y')},$$

which does not depend on  $\theta$ . Hence S is sufficient.

☐ The continuous case is similar, but the presence of a Jacobian makes the argument a bit messier.

stat.epfl.ch

#### Note to Theorem 32

- $\square$  We must show that that S is sufficient and that it is minimal.
- To show sufficiency, note that every  $y \in \mathcal{Y}$  lies in an element of the partition  $\mathcal{C}_s$  generated by the possible values of S, and choose a representative dataset  $y_s' \in \mathcal{C}_s$  for each s. For any y,  $y_{s(y)}'$  is in the same equivalence set as y, so the ratio  $f(y;\theta)/f(y_{s(y)}';\theta)$  does not depend on  $\theta$ , by the premise of the theorem. Hence

$$f(y;\theta) = f(y'_{s(y)};\theta) \times \frac{f(y;\theta)}{f(y'_{s(y)};\theta)} = g\{s(y);\theta\} \times h(y),$$

because  $y'_{s(y)}$  is a function of s(y). This factorisation shows that S=s(Y) is sufficient.

 $\square$  To show minimality, if T=t(Y) is any other sufficient statistic the factorisation theorem gives

$$f(y;\theta) = g'\{t(y);\theta\}h'(y)$$

for some g' and h'. If two datasets y and z are such that t(y) = t(z), then

$$\frac{f(z;\theta)}{f(y;\theta)} = \frac{g'\{t(z);\theta\}h'(z)}{g'\{t(y);\theta\}h'(y)} = \frac{h'(z)}{h'(y)}$$

does not depend on  $\theta$ , and hence s(y) = s(z). This implies that

$$\{z \in \mathcal{Y} : t(z) = t(y)\} \subset \{z \in \mathcal{Y} : s(z) = s(y)\},\$$

i.e., the partition generated by the values of S is coarser than that generated by the values of T, and therefore it must be minimal.

stat.epfl.ch

Autumn 2024 - note 2 of slide 79

#### **Examples**

Example 33 (Uniform model) Discuss minimal sufficiency when  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} U(0, \theta)$ .

**Example 34 (Location model)** If  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} g(y-\theta)$ , with g a known continuous density, find a sufficient statistic.

stat.epfl.ch

We already saw in Example 30 that  $M = \max(Y_1, \dots, Y_n)$  is sufficient, so if  $U = \min(Y_1, \dots, Y_n)$  then clearly S = (U, M) is also sufficient. The partitions of the sample space  $\mathcal{Y} = (0, \theta)^n$  corresponding to the statistics U, M and (U, M) have elements  $\mathcal{C}_u = \{y \in \mathcal{Y} : u(y) = u\}$ ,  $\mathcal{C}_m = \{y \in \mathcal{Y} : m(y) = m\}$  and

$$C_{u,m} = \{ y \in \mathcal{Y} : u(y) = u, m(y) = m \}, \quad 0 < u < m < \theta,$$

where for brevity we write  $y=(y_1,\ldots,y_n)$ ;  $C_u$  contains all the samples that have minimum u, for example. Notice that the same partition  $C_u$  would arise if we replaced u by a 1–1 function g(u).

- ☐ Sketch the partitions on the board!
- We already saw that the density of  $(Y_1, \ldots, Y_n)$  given that M = m, i.e., the conditional density of Y = y inside  $\mathcal{C}_m$ , is the density of n-1 independent U(0,m) variables, which does not depend on  $\theta$ , so the partition  $\{\mathcal{C}_m : 0 < m < \theta\}$  is sufficient. Obviously this is also true of  $\{\mathcal{C}_{um} : 0 < u < m < \theta\}$ .
- □ The density of U is given by differentiation of  $P(U \le u) = 1 (1 u/\theta)^n$ , for  $0 < u < \theta$ , i.e.,  $n\theta^{-1}(1 u/\theta)^{n-1}$  for  $0 < u < \theta$ , so the conditional density of  $Y_1, \ldots, Y_n$  given U is

$$\frac{\theta^{-n} I(0 < m < \theta)}{n \theta^{-1} (1 - u/\theta)^{n-1} I(0 < u < \theta)} = \frac{1}{n (\theta - u)^{n-1}} I(0 < u < m < \theta),$$

which depends on  $\theta$ . Hence the partition  $\{C_u : 0 < u < \theta\}$  is not sufficient.

 $\square$  In the calculation below we set 0/0=1. To show that M is minimal sufficient, note that if we have two samples  $y_1,\ldots,y_n$  and  $z_1,\ldots,z_{n'}$ , then (in an obvious notation)

$$\frac{f(z;\theta)}{f(y;\theta)} = \frac{\theta^{-n}I(0 < m_z < \theta)}{\theta^{-n'}I(0 < m_y < \theta)},$$

which is independent of  $\theta$  iff n=n' and  $m_y=m_z$ , i.e., the samples have the same size and the same maxima. Since we usually take the size as non-random (for reasons seen later), the sample maximum is minimal sufficient for  $\theta$ .

stat.epfl.ch

 $\Box$  The density g is continuous, so all the  $y_j$  are distinct with probability one. The joint density is therefore

$$f(y;\theta) = \prod_{j=1}^{n} g(y_j - \theta) = n! \prod_{j=1}^{n} g(y_{(j)} - \theta), \quad y_{(1)} < \dots < y_{(n)},$$

where  $s = (y_{(1)}, \dots, y_{(n)})$  are the sample order statistics. The labels on the original data are simply a permutation of the n labels on the order statistics, but the values are the same, so

$$f(y \mid s; \theta) = \frac{f(y; \theta)}{f(s; \theta)} = \frac{1}{n!}, \quad y \in \mathcal{Y}_s,$$

where  $\mathcal{Y}_s$  is the set of permutations of  $(y_1, \ldots, y_n)$  with order statistics s; clearly  $|\mathcal{Y}_s| = n!$ , because there are no ties.

 $\sqsupset$  To show minimality, take another sample  $z_1,\ldots,z_n$  and note that

$$\frac{f(z;\theta)}{f(y;\theta)} = \frac{\prod_{j=1}^{n} g(z_j - \theta)}{\prod_{j=1}^{n} g(y_j - \theta)},$$

which (for general g) is free of  $\theta$  only if the  $y_j$  are a permutation of the  $z_j$ , and this occurs only if the order statistics of the samples are the same.

 $\square$  Here |s|=n in general. In special cases (e.g., the normal density) there is a minimal sufficient statistic of lower dimension.

stat.epfl.ch

Autumn 2024 - note 2 of slide 80

# Using sufficiency: Rao-Blackwell theorem

Theorem 35 (Rao-Blackwell) If  $\tilde{\theta}$  is an unbiased estimator of a parameter  $\theta$  of a statistical model  $f(y;\theta)$  and if S=s(Y) is sufficient for  $\theta$ , then  $T=\mathrm{E}(\tilde{\theta}\mid S)$  is also unbiased, and  $\mathrm{var}(T)\leq \mathrm{var}(\tilde{\theta})$ .

**Example 36 (Exponential family)** Find a minimal sufficient statistic for  $\theta$  based on a random sample  $Y_1, \ldots, Y_n$  from a (d, d) exponential family. If d = 1 and s(Y) = Y, find a better unbiased estimator of  $\mu = \mathrm{E}(Y_1)$  than  $Y_1$ .

 $\square$  The Rao-Blackwell theorem is non-asymptotic: it holds for any n.

☐ The process of getting a better estimator, Rao—Blackwellization, is useful in many contexts (e.g., as a variance reduction technique in MCMC estimation).

stat.epfl.ch

#### Note to Theorem 35

- $\square$  We must show that that T is a statistic, that it is unbiased, and that it has smaller variance than  $\theta$ .
- □ We have

$$T = \mathrm{E}(\tilde{\theta} \mid S) = \int \tilde{\theta}(y) f(y \mid s) \, \mathrm{d}y,$$

which does not depend on  $\theta$  by sufficiency of S, so T is indeed a statistic.

☐ Moreover

$$E(T) = \int \left\{ \int \tilde{\theta}(y) f(y \mid s) dy \right\} f(s; \theta) ds = \int \tilde{\theta}(y) f(y; \theta) dy = \theta,$$

by unbiasedness of  $\tilde{\theta}$ .

 $\square$  Finally we write  $\tilde{\theta} - \theta = \tilde{\theta} - T + T - \theta = A + B$ , say, and note that  $E(A \mid S) = E(B) = 0$ , so

$$cov(A, B) = E_S E_{Y|S}(AB) = E_S \{BE_{Y|S}(A \mid S)\} = E_S(B0) = 0,$$

and thus

$$\operatorname{var}(\tilde{\theta}) = \operatorname{var}(A + B) = \operatorname{var}(A) + \operatorname{var}(B) = \operatorname{var}(\tilde{\theta} - T) + \operatorname{var}(T) \ge \operatorname{var}(T),$$

with equality iff  $\mathrm{E}\{(T-\tilde{\theta})^2\}=0$ , i.e., T and  $\tilde{\theta}$  are equal almost everywhere.

stat.epfl.ch

Autumn 2024 - note 1 of slide 81

## Note to Example 36

☐ The log joint density is

$$\sum_{j=1}^{n} \log f(y_j; \theta) = \sum_{j=1}^{n} \left[ \log m(y_j) + s_j^{\mathrm{T}} \varphi(\theta) - nk \{ \varphi(\theta) \} \right] \equiv s^{\mathrm{T}} \varphi(\theta) - nk \{ \varphi(\theta) \}, \quad \theta \in \Theta,$$

so  $s = \sum s(y_i)$  is sufficient. It is also minimal, because

$$\sum_{j=1}^{n} \log f(z_j; \theta) - \sum_{j=1}^{m} \log f(y_j; \theta)$$

does not depend on  $\theta$  iff  $\sum s(y_j) = \sum s(z_j)$  (and n=m).

 $\square$  To find the unbiased estimator we argue by symmetry: clearly  $\mathrm{E}(Y_1 \mid S) = \cdots = \mathrm{E}(Y_n \mid S)$  because S is symmetric in the  $Y_i$  and the latter were IID. Hence

$$E(Y_1 \mid S) = n^{-1} \sum_{j=1}^{n} E(Y_j \mid S) = E\left(n^{-1} \sum_{j=1}^{n} Y_j \mid S\right) = E(S \mid S) = S,$$

and clearly  $var(S) = var(Y_1)/n$ .

stat.epfl.ch

### Complete statistics

- ☐ If we have numerous unbiased estimators, all of which could be improved, then we would like to find the best.
- $\square$  To force uniqueness we introduce **completeness**: a statistic S (or its density) is **complete** if for any function h,

$$\mathrm{E}\{h(S)\} = 0 \text{ for all } \theta \implies h(s) \equiv 0,$$

and S is **boundedly complete** if this is true provided h is bounded.

 $\square$  If S is complete, then two unbiased estimators based on S satisfy

$$E\{\tilde{\theta}_1(S) - \tilde{\theta}_2(S)\} = 0$$
 for all  $\theta$ ,

so by completeness  $\tilde{\theta}_1(S) = \tilde{\theta}_2(S)$  is unique.

**Example 37** Show that the maximum of a uniform sample is complete, and hence find the unique minimum variance unbiased estimator of  $\theta$ .

**Theorem 38 (No proof)** The minimal sufficient statistic in a (d, d) exponential family (i.e., one for which the parameter space contains an open d-dimensional set) is complete.

stat.epfl.ch Autumn 2024 – slide 82

# Note to Example 37

 $\square$  The density of M is of the form

$$f(m;\theta) = a(m)b(\theta)I(0 < m < \theta), \quad 0 < m < \theta, \quad \theta > 0,$$

where  $a(m)=nm^{n-1}$  and  $b(\theta)=\theta^{-m}$ , so suppose for a contradiction that there exists a function h for which  $h(m)\neq 0$  but

$$0 = \mathrm{E}\{h(M)\} = \int_0^\theta a(m)b(\theta)h(m)\,\mathrm{d}m \propto \int_0^\theta a(m)h(m)\,\mathrm{d}m, \quad \theta > 0.$$

- The integral here equals zero for all  $\theta$  so its derivative  $a(\theta)h(\theta)$  with respect to  $\theta$  must be zero. However,  $a(m) \neq 0$ , so  $h(\theta) = 0$  for all  $\theta > 0$ , which is a contradiction. Hence M is complete.
- $\square$  For the unbiased estimator, we note that  $\mathrm{E}(M)=n\theta/(n+1)$ , so  $\tilde{\theta}=(n+1)M/n$  is unbiased and must therefore be the unique minimum variance unbiased estimator of  $\theta$ .

stat.epfl.ch

## Using sufficiency: Eliminating nuisance parameters

Sometimes the removal of nuisance parameters can be based on the following results.

**Lemma 39** In a statistical model  $f(y; \psi, \lambda)$  let  $W_{\psi}$  be (minimal) sufficient for  $\lambda$  when  $\psi$  is regarded as fixed. Then the conditional density  $f(y \mid w_{\psi}; \psi)$  depends only on  $\psi$ . This holds in particular if  $W_{\psi}$  does not depend on  $\psi$ .

**Lemma 40** In a (d,d) exponential family in which  $\varphi(\theta)=(\psi,\lambda)$  and s=(t,w) is partitioned conformally with  $\varphi$ , the conditional density of T given  $W=w^{\mathrm{o}}$  is an exponential family that depends only on  $\psi$ .

**Example 41 (** $2 \times 2$  **table)** Apply Lemma 40 to the  $2 \times 2$  table

|         | Success     | Failure                 | Total       |
|---------|-------------|-------------------------|-------------|
| Treated | $R_1$       | $m_1 - R_1$             | $m_1$       |
| Control | $R_0$       | $m_0 - R_0$             | $m_0$       |
| Total   | $R_1 + R_0$ | $m_0 + m_1 - R_1 - R_0$ | $m_1 + m_0$ |

where  $R_0 \sim B(m_0, \pi_o)$  and  $R_1 \sim B(m_1, \pi_1)$  are taken to be independent.

stat.epfl.ch Autumn 2024 – slide 83

#### Note to Lemma 39

If  $\psi$  is regarded as fixed, then we can write

$$f(y; \psi, \lambda) = f(w_{\psi}; \psi, \lambda) \times f(y \mid w_{\psi}; \psi),$$

where the rightmost term is free of  $\lambda$ , with logarithm

$$\log f(y; \psi, \lambda) - \log f(w_{\psi}; \psi, \lambda).$$

stat.epfl.ch

Autumn 2024 - note 1 of slide 83

#### Note to Lemma 40

In the discrete case, let  $\sum_{\mathbf{o}}$  denote the sum over the set  $\{y: w=w^{\mathbf{o}}\}$  and note that

$$f(w^{o}; \psi, \lambda) = \sum_{o} m^{*}(y) \exp \{t^{T}\psi + w^{oT}\lambda - k(\varphi)\}$$
$$= \exp \{w^{oT}\lambda - k(\varphi)\} \sum_{o} m^{*}(y) \exp (t^{T}\psi)$$

so

$$f(t \mid w^{o}; \psi) = \frac{m^{*}(y) \exp\{t^{\mathsf{T}}\psi + w^{o\mathsf{T}}\lambda - k(\varphi)\}}{\exp\{w^{o\mathsf{T}}\lambda - k(\varphi)\} \sum_{o} m^{*}(y) \exp(t^{\mathsf{T}}\psi)}$$

$$= m^{*}(y) \exp\{t^{\mathsf{T}}\psi - \log\sum_{o} m^{*}(y) \exp(t^{\mathsf{T}}\psi)\}$$

$$= m^{*}(y) \exp\{t^{\mathsf{T}}\psi - k(\psi; w^{o})\},$$

say, where the cumulant generator for the conditional density depends on  $w^{\rm o}$ . This is the announced exponential family.

stat.epfl.ch

- $\square$  A  $2 \times 2$  table arises when  $m_1$  individuals are allocated to a treatment and  $m_0$  are allocated to a control. Responses from all individuals are independent and are binary with values 0/1, so the total number of successes for the control group  $R_0 \sim B(m_0, \pi_0)$  is independent of those for the treatment group,  $R_1 \sim B(m_1, \pi_1)$ . Thus  $m_0$  and  $m_1$  are considered to be fixed, and  $R_0$  and  $R_1$  as random.
- $\square$  A number of parameters might be of interest, but most commonly  $\psi$  is taken to be the difference in log odds of success and  $\lambda$  the log odds of success in the control group, i.e.,

$$\psi = \log\{\pi_1/(1-\pi_1)\} - \log\{\pi_0/(1-\pi_0)\} = \log\left\{\frac{\pi_1(1-\pi_0)}{\pi_0(1-\pi_1)}\right\}, \quad \lambda = \log\{\pi_0/(1-\pi_0)\},$$

giving

$$\pi_0 = \frac{e^{\lambda}}{1 + e^{\lambda}}, \quad \pi_1 = \frac{e^{\lambda + \psi}}{1 + e^{\lambda + \psi}}, \quad \psi, \lambda \in \mathbb{R}.$$

The joint density of the data reduces to

$$\binom{m_0}{r_0} \pi_0^{r_0} (1 - \pi_0)^{m_0 - r_0} \times \binom{m_1}{r_1} \pi_1^{r_1} (1 - \pi_1)^{m_1 - r_1} = \binom{m_0}{r_0} \binom{m_1}{r_1} \frac{e^{r_1 \psi + (r_0 + r_1)\lambda}}{(1 + e^{\lambda})^{m_0} (1 + e^{\lambda + \psi})^{m_1}},$$

which is a (2,2) exponential family with  $\varphi=(\psi,\lambda)$ ,  $s=(r_1,r_0+r_1)$ , and

$$m^*(y) = {m_0 \choose r_0} {m_1 \choose r_1}, \quad k(\varphi) = -m_0 \log \left(1 + e^{\lambda}\right) - m_1 \log \left(1 + e^{\lambda + \psi}\right).$$

 $\square$  Lemma 40 implies that conditioning on  $W = R_0 + R_1$  will eliminate  $\lambda$ . Now

$$P(W = w) = \sum_{r=r_{-}}^{r_{+}} {m_{0} \choose w - r} {m_{1} \choose r} \frac{e^{r\psi + w\lambda}}{(1 + e^{\lambda})^{m_{0}} (1 + e^{\lambda + \psi})^{m_{1}}},$$

where  $r_- = \max(0, w - m_0)$ ,  $r_+ = \min(w, m_1)$ , so the conditional density of  $T = R_1$  given  $W = R_1 + R_0 = w$  is the non-central hypergeometric density

$$P(T = t \mid W = w; \psi) = \frac{\binom{m_0}{w - t} \binom{m_1}{t} e^{t\psi}}{\sum_{r = r_-}^{r_+} \binom{m_0}{w - r} \binom{m_1}{r} e^{r\psi}}, \quad t \in \{r_-, \dots, r_+\}.$$

stat.epfl.ch

### **Ancillary statistics**

 $\square$  Sometimes we can write a minimal sufficient statistic as S=(T,A) where A=a(Y) is an ancillary statistic, defined as a function of the minimal sufficient statistic whose distribution does not depend on the parameter. Then

$$f_Y(y;\theta) = f_{Y|S}(y \mid s) f_S(s;\theta) = f_{Y|S}(y \mid s) \times f_{T|A}(t \mid a;\theta) \times f_A(a),$$

and inference on  $\theta$  is based on the second term only, with A considered as fixing the reference set S used in repeated sampling inference.

- ☐ A distribution-constant statistic is one whose distribution does not depend on the parameter.
- ☐ An ancillary statistic is distribution-constant, but the converse may not be true.

**Example 42 (Sample size)** If  $Y_1, \ldots, Y_N \stackrel{\text{iid}}{\sim} f(y; \theta)$ , with the sample size N stemming from a random mechanism, then clearly the most general sufficient statistic is  $(Y_1, \ldots, Y_N, N)$ . If the distribution of N that does not depend on  $\theta$ , however,

$$f(y, n; \theta) = f(y \mid n; \theta) f(n) = \prod_{j=1}^{n} f(y_j; \theta) \times f(n),$$

so N is ancillary for  $\theta$ , and we should use the reference set consisting of vectors  $y_1, \ldots, y_n$  of length n.

stat.epfl.ch Autumn 2024 – slide 84

### Ancillary statistics II

**Example 43 (Regression)** In a regression setting a response vector  $Y_{n\times 1}$  depends on a matrix  $X_{n\times p}$  of covariates. If their joint density factorises as  $f(y\mid x;\psi)f(x)$ , so that the interest parameters  $\psi$  only appear in the first term, then we should treat the X matrix as fixed, even if (Y,X) are actually sampled from some distribution.

Example 44 (Location model) Show that writing

$$T = Y_{(1)}, \quad A = (0, Y_{(2)} - Y_{(1)}, \dots, Y_{(n)} - Y_{(1)}),$$

leads to inference based on the conditional density

$$f(t \mid a; \theta) = \frac{\prod_{j=1}^{n} g(t - \theta + a_j)}{\int \prod_{j=1}^{n} g(u + a_j) du}.$$

**Theorem 45 (Basu)** A complete minimal sufficient statistic is independent of any distribution-constant statistic.

 $\square$  Write  $y'_j = y_{(j)}$  for simplicity of notation, and note that

$$y'_1 = t$$
,  $y'_j = y'_1 + (y'_j - y'_1) = t + a_j$ ,  $j = 2, ..., n$ ,

so the Jacobian for the transformation is

$$\frac{\partial(y_1',\ldots,y_n')}{\partial(t,a_2,\ldots,a_n)} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1\\ 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ 0 & 0 & 0 & \cdots & 1 \end{vmatrix} = 1,$$

and thus (setting  $a_1 = 0$  for simplicity) the density of the configuration A is

$$f_A(a) = \int \prod_{j=1}^n g(t + a_j - \theta) dt = \int \prod_{j=1}^n g(u + a_j) du,$$

where we put  $u=t-\theta$  in the second integral. We see that  $Q=T-\theta$  is a pivot, because

$$P(Q \le q \mid A = a) = P(T - \theta \le q \mid A = a) = \frac{\int_{j=1}^{q} \prod_{j=1}^{n} g(u + a_j) du}{\int \prod_{j=1}^{n} g(u + a_j) du},$$

and using the quantiles  $q_{\alpha/2}(a)$  and  $q_{1-\alpha/2}(a)$  will give conditional confidence limits.

 $\square$  Assessment of model fit (i.e., of g) can be based on QQ plots of the values of a. We are familiar with this in regression problems.

stat.epfl.ch

Autumn 2024 - note 1 of slide 85

#### Note to Theorem 45

 $\square$  In the discrete case, note that for any c and  $\theta$ , the marginal density of C may be written using the sufficient statistic S as

$$f_C(c) = \sum_{s} f_{C|S}(c \mid s) f_S(s; \theta),$$

so for all  $\theta$  we have

$$\sum_{c} \{ f_C(c) - f_{C|S}(c \mid s) \} f_S(s; \theta) = 0,$$

and completeness of S implies that  $f_C(c) = f_{C|S}(c \mid s)$  for every c and s, i.e.,  $C \perp \!\!\! \perp S$ .

☐ The argument in the continuous case is analogous.

stat.epfl.ch

**2.4 Inference** slide 86

# 'Ideal' frequentist inference

- $\square$  Frequentist recipe for inference on an interest parameter  $\psi$ :
  - find the likelihood function for the data Y;
  - find a sufficient statistic S = s(Y) of the same dimension as  $\theta$ ;
  - eliminate any nuisance parameters  $\lambda$ ;
  - find a function T of S whose distribution depends only on  $\psi$ ;
  - use the distribution of T (conditioned on any ancillary statistics) for inference (confidence limits/tests) for  $\psi$ ;
  - (use the conditional distribution of Y given S to assess model adequacy).
- For inference note that if T is continuous with distribution F, observed value  $t^o$  and the true value of  $\psi$  is  $\psi_0$ , then

$$F(T; \psi_0) \sim U(0, 1)$$
 is a pivot,

so confidence limits for  $\psi_0$  are given by inverting it, i.e., solving  $F(t^o; \psi_\alpha) = \alpha$  for appropriate values of  $\alpha$ .

stat.epfl.ch Autumn 2024 – slide 87

# Note: Why is $F(T; \psi_0)$ uniform?

 $\square$  Write  $F_0(t) = P(T \le t; \psi_0)$ , and note if  $T \sim F_0$ , then

$$P\{F_0(T) \le u\} = P\{T \le F_0^{-1}(u)\} = F_0\{F_0^{-1}(u)\} = u, \quad 0 < u < 1,$$

i.e.,  $F_0(T) \sim U(0,1)$  is a pivot, because it depends on the data (through T), the parameter  $\psi_0$ , and has a known distribution.

 $\square$  This argument holds for any continuous T, but is only approximate if T is discrete (e.g., has a Poisson distribution). In such cases  $F_0(T)$  can only take a finite or countable number of values that give the achievable confidence levels.

stat.epfl.ch

Autumn 2024 - note 1 of slide 87

#### Significance functions

☐ It is useful to plot the P-value (or significance) function

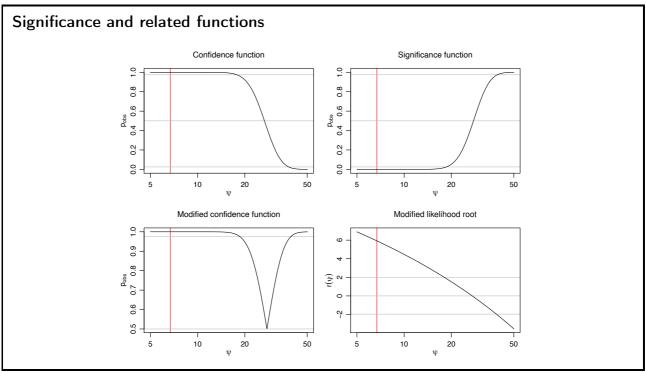
$$p(\psi) = P(T > t^{o}; \psi) = 1 - F(t^{o}; \psi)$$
 against  $\psi$ .

As  $F_0(T) \sim U(0,1)$  when  $\psi = \psi_0$ , we regard values of  $\psi$  for which  $p(\psi)$  is too extreme as incompatible with  $t^o$ , leading to the (two-sided)  $(1-\alpha)$  confidence set

$$\{\psi : \alpha/2 \le p(\psi) \le 1 - \alpha/2\},\$$

or to using  $p(\psi_0)$  as the P-value for a test of  $H_0: \psi = \psi_0$  against  $H_1: \psi > \psi_0$ .

- ☐ Equivalent functions include
  - the confidence function  $1 p(\psi)$ ;
  - the modified confidence function  $\max\{p(\psi), 1-p(\psi)\}$ ; and
  - a **pivot function** showing how a (standard normal) pivot varies with  $\psi$ .



stat.epfl.ch Autumn 2024 – slide 89

#### **Examples**

**Example 46 (Normal sample)** Apply the recipe above to inference for the mean of a normal random sample with known variance.

**Example 47 (Uniform sample)** Apply the recipe above to inference for the upper limit of a uniform sample.

**Example 48** (2  $\times$  2 table) Apply the recipe above to the 2  $\times$  2 table.

stat.epfl.ch Autumn 2024 – slide 90

### Note to Example 46

- Suppose that  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\psi, 1)$ . This is a (1,1) exponential family, so the minimal sufficient statistic is  $S = \overline{Y} \sim \mathcal{N}(\psi, 1/n)$ , and clearly we should take  $T = \overline{Y}$ , so  $\sqrt{n}(\overline{Y} \psi) \sim \mathcal{N}(0, 1)$ .
- ☐ Here the significance function is

$$p(\psi) = P(T \ge t^{o}; \psi) = 1 - \Phi\{n^{1/2}(\overline{y}^{o} - \psi)\} = \Phi\{n^{1/2}(\psi - \overline{y}^{o})\},$$

and solving this for  $p(\psi_{\alpha})=\alpha$  gives  $n^{1/2}(\psi_{\alpha}-\overline{y}^{\rm o})=z_{\alpha}$ , i.e.,  $\psi_{\alpha}=\overline{y}^{\rm o}+n^{-1/2}z_{\alpha}$ , leading to the familiar  $(1-\alpha)$  confidence interval (L,U) with observed value

$$(\overline{y}^{o} + n^{-1/2}z_{\alpha/2}, \quad \overline{y}^{o} + n^{-1/2}z_{1-\alpha/2}).$$

 $\square$  For the model assessment step we could note that as  $S=\overline{Y}$  is a complete minimal sufficient statistic, the distribution-constant statistic  $C=(Y_1-\overline{Y},\ldots,Y_n-\overline{Y})$  is independent of  $\overline{Y}$  (by Basu's theorem), and therefore plots and tests of the suitability of the model would be based on C.

stat.epfl.ch

We have already seen that M is minimal sufficient and that its distribution  $P(M \le x) = (x/\theta)^n$ , for  $0 < x < \theta$ , depends only on  $\theta$ . Hence the corresponding significance function based on an observed  $m^{\rm o}$  would be

$$p(\theta) = 1 - (m^{o}/\theta)^{n} \quad \theta > m^{o},$$

from which we read off the limits using the equation  $\alpha = 1 - (m^{\circ}/\theta_{\alpha})^n$ , i.e.,  $\theta_{\alpha} = m^{\circ}(1-\alpha)^{-1/n}$ .

stat.epfl.ch

Autumn 2024 - note 2 of slide 90

### Note to Example 48

☐ In this case

$$P(T \le t \mid W = w; \psi) = \sum_{r=r_{-}}^{t} \frac{\binom{m_0}{w-r} \binom{m_1}{r} e^{r\psi}}{\sum_{r=r_{-}}^{r_{+}} \binom{m_0}{w-r} \binom{m_1}{r} e^{r\psi}}, \quad t \in \{r_{-}, \dots, r_{+}\},$$

and we can vary  $\psi$  to (numerically) solve

$$P(T \le t \mid W = w; \psi_{\alpha}) = \alpha,$$

thus giving limits for confidence intervals (approximate because the model is discrete).

stat.epfl.ch

Autumn 2024 - note 3 of slide 90

#### Comments

The essence of the recipe on slide 87 is to base an exact pivot  $Q = q(Y; \psi)$  on a minimal sufficient statistic and use the significance (or p-value) function

$$P\{q(Y;\psi) \le q_n\}, p \in (0,1)$$

to invert Q and thus make inference on  $\psi$  using the quantiles  $q_p$  of Q.

☐ The difficulties are that:

- finding the sufficient statistic and a function of it that depend exactly only on  $\psi$  are typically possible only in simple models;
- finding the exact distribution of the pivot may be difficult; and
- assessment of model fit using the conditional distribution is difficult in general.

□ Nevertheless the recipe suggests how to proceed in more general settings, by basing approximate pivots on likelihood-based statistics, which will automatically depend on the minimal sufficient statistic.

stat.epfl.ch