2 Some Basic Concepts slide 59

2.1 Likelihood slide 60

Likelihood

0 We now suppose that the data are provisionally believed to come from a parametric model
fy (y;0) for which @ lies in © C R

[0 Given observed data y, the likelihood and the log likelihood are

L(0) = fy(y;0), L(0)=log fy(y;0), 0¢€6;

we regard these as functions of @ for fixed y. The log likelihood is often more convenient to work
with because if i consists of independent observations y1, ..., y,, then

0(0) =1log fy (y;0) =log [ [ f(ys:0) = _log f(y;;6), 6 €0,
=1 =1

so laws of large numbers and other limiting results apply directly to n=14(6).
O Comments:
— the posterior density based on data y and prior f(6) is proportional to L(6) x f(6);

— the formula for ¢(0) is readily extended — for example, if y1,...,y, are in time order, then

00) = "log f(y; | Y1 - yj—150) + log f(y1;6).

=2
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Likelihood quantities

O The maximum likelihood estimate (MLE) 0 satisfies

~ ~

0(0) > £(0) or equivalently L(0) > L(6), 0 € 0.
[ Often 6 is unique and satisfies the score (or likelihood) equation

VI(9) = ag_%m —0,

interpreted as a d x 1 vector equation if 8 is a d x 1 vector.

O The observed information and expected (Fisher) information are defined as

2(9)
9006™

2(0) = =V*(0) = u0) =E{5(0)};

these are d x d matrices if § has dimension d and otherwise are scalars.

O To evaluate ¢(#) we replace y by the random variable Y and take expectations.

Example 27 (Exponential family) Find the likelihood quantities when Y1, ...,Y,, is a random
sample from a (d,d) exponential family.
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Note to Example 27

0 The density for a single observation is

f(y;0) =m(y)exp{s'¢ — k(p)} = m(y) exp [s"p(0) — k{p(0)}], 0€O,yec),

where s = s(y), so the corresponding log likelihood based on y1,...,y, is

Zlogf yj;0) = Z Fo(0) — nk{p(0)} = s"p(0) — nk{p(6)}, €O,
7=1
where s = zj y; and = means that we have dropped additive constants from the log likelihood.

O If V denotes gradient with respect to 6 and k, and k., denote the gradient and Hessian matrix of
k with respect to ¢, then the score equation is

Vp(0)'s —nVp(0) k{p(0)} =0,

so if the d x d matrix ¢(0)" is invertible (which is the case for a smooth 1 — 1 transformation),
then the MLE ¢ satisfies k() =5 = s/n (note that E(S/n) = k,(¢), so @ is also a moments
estimate), and therefore § = ¢~ 1().
0 To compute the observed information we write the likelihood derivatives as
Doy i Ok ()

— =1,...,d
39,»(% naer 3tpt ) r ) s by

using the Einstein summation convention that implies summation over repeated indices (here t),
and then differentiate with respect to 6, to obtain

2 2 2
Opr (o, O OK(p) | 00Oy k()

00 =500, * " 00,00, Dy " 00, 90, didp, T

., d.

Note that

— if ¢(f) =0, i.e., the exponential family is in canonical form, then V() = I; and the second
derivatives are zero, so this entire expression reduces to nVQk:(go), which is non-random;

- E(S:) = nok(p)/0¢:, so in any case
U8) = nV(0) kop{0(0)} {Vp(0)"} 5
— the MLE satisfies the score equation, so the observed information at the MLE is
~ N T
§0) = nVe(0) ko {o(@)} { Ve O) }
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Invariance

0 We prefer inferences to be invariant to (smooth) 1-1 transformations of data and/or parameter.

O If Z=2(Y)is a 1-1 function of a continuous variable Y and the transformation does not depend
on 6, then fz(z;0) = fy{y~"(2);0}|dy/dz|, so

0(0;z) = log fz(2;0) = £(0;y) = log fy (y; 0),

where = means that an additive constant not depending on 6 has been dropped — hence
likelihood inference is the same whether we use Y or Z.

O Likewise a smooth 1-1 transformation from 6 to ¢ (6) will give

Fluse) = Hy 0(0)} = f(y:90),
where the tilde denotes the density expressed using ¢. Clearly

Fw:2) = Flue®)) = Fw:d), 20 = 250022

00" | o= @) ,

~

so the maximum likelihood estimates satisfy ¢ = ¢(#). This implies that we can optimise £ in a
numerically convenient parametrisation, ¢, say, and then transform to 6.
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Interest and nuisance parameters

O In most cases 6 = (¢, ), where the
— (low-dimensional, often scalar) interest parameters 1) represent targets of inference with
direct substantive interpretations;

— (maybe high-dimensional) nuisance parameters \ are needed to complete a model
specification, but are not themselves of main concern.

O Ideally inference on 1) should be invariant to interest-respecting (or interest-preserving)
transformations

VA = =n),¢ = (Y, ).
O For example, if X ~ N (u,0?) then the log-normal variable Y = exp(X) has mean
Y = exp(p + 0%/2), and
— confidence intervals for 1) should be the same whether the nuisance parameter \ is chosen as p
oro?oru—o?/2o0r...;
— if (L,U) is a confidence interval for 1, then a confidence interval for log ¢ should be
(log L,logU).
O Later we will try to construct likelihoods that depend only on the interest parameters.
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2.2 Complications slide 65

Overview

O In theoretical discussion we glibly write something like
“Let Vi,...,Y, 2 f(y;0)..."
but in applications this cannot be taken for granted.

O Ideally we can ensure random sampling and full measurement of observations from a well-specified
population, but if not, possible complications include:

selection of observations based on their values;

censoring;

dependence;

missing data.
O We now briefly discuss these . ..
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Selection

O If the available data were selected from a population using a mechanism expressible in probabilistic
terms, then the likelihood is
PY =y|S;0),
where S is the selection event. If S is unknown or not probabilistic, only sensitivity analysis is
possible (at best).
00 A common example is truncation of independent data, where S; = {Y; € Z;} for some set Z;,
giving likelihood

1 £ | y; € Z;50).
j=1

Example 28 In certain demographic databases on very old persons, an individual born on
calendar date x is included only if they die aged ug + t, where ug is a high threshold (e.g., 100
years) and t > 0, between two calendar dates ¢; and cy. The likelihood contribution for this
person is then of form

f(t)

m, a<t<hb, [a,b] = [max(0,c; — x),co — x],

where x is the calendar date at which they reach age ug. See the next page.
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Selection in a Lexis diagram

excess lifetime above 1

/4

calendar time

over ug are shown.

excess lifetime above 1

rC—Xc

’tA
FCl—Xa

rC1—Xc

’tB
rC2—Xp

Lexis diagrams showing age on the vertical axis and calendar time on the horizontal axis. Only ages

Left: only the individuals with solid lines appear in the sample.
Right: explanation of the intervals for which different individuals are observed.

Lo

calendar time
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Length-biased sampling

50
40

30

Lower left: histogram of all the intervals
Lower right: histogram of the selected intervals.

20 = <, . - =
10 = i. >
. . - o 4 . -
0 . -
0 5 10 15 20
0.100
0.20
0.075
’?0.15 2
2010 £ 0.050
o’ a
0.05 0.025
0.00 0.000
0 10 20 30 40 10 20 30 40
y y
Top: we select the intervals that contain time y = 10.
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Biased sampling

O Arises when the probability of selecting (sampling) an observation depends on its value.

O If p(y) =P(S|Y = y) denotes the probability that an observation of size y is selected, then the
density of a selected observation is

PSEY =y)fly) __ p@)f)
P(S) JpW)f(y)dy’

O A common example, length-biased sampling, occurs when p(y) x y, giving

yfly)  _ yf)
Jaf@)de  p 7

say, and the mean length for the selected observations is not E(Y) = i but

fsty)=flylS)=

fs(y) = y >0,

B [8) = [ufs)dy = [vFw)/udy =+ o,
where 02 = var(Y') is the population variance.

0 Many other types of biased sampling arise in medical and epidemiological studies, in sampling
networks, and in other contexts.
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Censoring
[0 Selection and truncation determine which observations appear in a sample, whereas censoring
reduces the information available.

0 Censoring is very common in lifetime data and leads to the precise values of certain observations
being unknown:

— right-censoring results in (7' = min(Y,b), D = I(Y < b)) for some b;
— left-censoring results in (T = max(Y,a),D = I(Y > a)) for some a;

— interval-censoring results in (Y, I(a <Y <)), (a,I(Y <a)) or (b,I(Y > b)), or it is known
only which of certain intervals 71, ..., Zx contains Y.

0 Here the interval limits may be random, for simplicity are often taken to be independent of Y.

O In each case we lose information when Y lies within some (possibly random) interval Z, often with
the assumption that Y 1L 7.

O Rounding is a form of interval censoring, and we have already seen (exercises) that little
information is lost if the rounding is not too coarse.

O Likelihood contributions based on right- and left-censored observations are

frH1-Fr @03, O E ()}

0 Truncation and censoring can arise together; see the Lexis diagram.
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Dependent data

O If the joint density of Y = (Y7,...,Y},) is known, then the prediction decomposition
n
F@:0)=fr -y 0) = f0) [ £l v, yi-1:0)
7j=2

gives the density (and hence the likelihood).

O This is most useful if the data arise in time order and satisfy the Markov property, that given the
‘present’ Y;_y, the ‘future’, Y;,Y,1,..., is independent of the ‘past’, ... ,Y;_3,Y;_», so

filys, - yi-130) = f(yy | yj-150)
and the product above simplifies to

n
f(y;0) = f(y1;0 H y] | Yji— 1;0
j=2

0 Many variants of this are possible.

Example 29 (Poisson birth process) Find the likelihood when Yy ~ Poiss(#) and Yy, ..., Y, are
such that Yj 1 | Yo = yo,...,Y; = y; ~ Poiss(0y;).
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Note to Example 29

Here

Qry.: \Vit1
o) —exp(=0y;), Y =01, >0

Wi 1y;:0) = —
Yj+1:

If Yy is Poisson with mean 6, the joint density of data yg,...,yn is

so the likelihood is )

Hyj! exp (solog 6 — s16), 0 >0,
=0

where so = > _y; and 51 =1+ Zj "o Yj- This is a (2,1) exponential family.
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Missing data

O Missing data are common in applications, especially those involving living subjects.
0 Central problems are:
— uncertainty increases due to missingness;
— assumptions about missingness cannot be checked directly, so inferences are fragile.

0 Suppose the ideal is inference on 6 based on n independent pairs (X,Y’), but some Y are missing,
indicated by a variable I, so we observe either (x,y,1) or (z,7,0).

O The likelihood contributions from individuals with complete data and with y missing are
respectively

P(I=1|2.9)f(y | z:6)f(x:6). / P(I =0 2.9)f(y | 2:0)(x:6)dy,

and there are three possibilities:

— data are missing completely at random, P(I =0 | z,y) = P({ = 0);

— data are missing at random, P(I =0 | z,y) =P(I =0 z); and

— non-ignorable non-response, P(I =0 | z,y) depends on y and maybe on z.

The first two are sometimes called ignorable non-response, as then I has no information about 6
and can (mostly) be ignored.
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Example

Missing data in straight-line regression. Clockwise from top left: original data, data with values missing
completely at random, data with values missing at random — missingness depends on x but not on y,
and data with non-ignorable non-response — missingness depends on both = and y. Missing values are
represented by a small dot. The dotted line is the fit from the full data, the solid lines those from the
non-missing data.

180
180

Sea level (cm)
140
Sea level (cm)

80 100
80 100

1930 1950 1970 1930 1950 1970
Year Year

180
180

140

Sea level (cm)
Sea level (cm)

80 100

1930 1950 1970 1930 1950 1970
Year Year
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Example
Truth Average estimate (average standard error)
Full MCAR MAR NIN
Bo 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
f1 050 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

[0 Average estimates and standard errors for missing value simulation, for full dataset, with data
missing completely at random (MCAR), missing at random (MAR) and with non-ignorable
non-response (NIN) and non-response mechanisms

0.5,
P(I=0|z,y) =4 ®{0.05(z—7)},
©[0.05(x =) + {y — Bo — Bz — )} /o];
In each case roughly one-half of the observations are missing.

[0 Data loss increases the variability of the estimates but their means are unaffected when the

non-response is ignorable; otherwise they become entirely unreliable.
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Discussion

O Truncation, censoring and other forms of data coarsening are widely observed in time-to-event
data and there is a huge literature on them, especially in terms of non- and semi-parametric
estimation.

O Selection (especially self-selection!) can totally undermine analysis if ignored or if it can't be
modelled.

O The Markov property plays a key simplifying role in inference based on time series, and
generalisations are important in spatial and other types of complex data.

O Missingness is usually the most annoying of the complications above:

— it is quite common in applications, often for ill-specified reasons;

— when there is NIN and a non-negligible proportion of the data is missing, correct inference
requires us to specify the missingness mechanism correctly;

— in practice it is hard to tell whether missingness is ignorable, so fully reliable inference is largely
out of reach;

— sensitivity analysis and or bounds to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful.
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2.3 Data Reduction slide 77

Sufficiency

[0 When can a lot of data be reduced to a few relevant quantities without loss of information?

O A statistic S = s(Y') is sufficient (for 6) under a model fy(y;0) if the conditional density
fyis(y | s;0) is independent of 6 for any 6 and s.

O This implies that
fy(y;0) = fs(s:0) fyis(y | 5),  €(0;8) = £(0;y),
so we can regard s as containing all the sample information about 6: if we consider Y to be
generated in two steps,
— first generate S from fs(s;#), and
— then generate Y from fy5(y | 5),
and if the model holds, then the second step gives no information about 6, so we could stop after
the first step.
[0 The conditional distribution fys(y | s) allows assessment of the model without reference to ©.

Example 30 (Uniform model) /fY;,....Y, Y U(6), find a sufficient statistic for § and say how to

use f(y | s) to assess model fit.
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Note to Example 30

O The density is f(y;60) = 6~11(0 < y < ), so since the observations are independent, the
likelihood is

LO)=T[0710<y; <0)=0"T0<y1,....yn <0) =610 <m <), 0>0,
j=1

where m = max(y1,...,y,); note that [[; I(0 <y; <0) =1I(0 <m <0). Clearly the likelihood
depends on the data only through n and m, and as n is taken to be fixed, a sufficient statistic is
M = maxy;.

O We have P(M < m) = (m/0)" for 0 < m < 6, so M has density nm™~1/0" for 0 < m < 6, but
to compute the conditional density of the observations given M it is easiest to first compute that
of the order statistics, i.e.,

flyry ooy yp—1,m)=nl0™", 0<y; < -+ <yp_1<m<H,
so the joint density of Y{y),...,Y(,_1) given M =m is

n!o™"  (n—1)!
nmn—1/67 I 0<yr < <yYp1<m,

which is the density of the order statistics of a random sample of size n — 1 from the U (0, m)
density. Tests of fit will be based on this density, which does not depend on 6.

stat.epfl.ch Autumn 2024 — note 1 of slide 78

50



Minimal sufficiency

O If S =s(Y) is sufficient and "= ¢(Y") is any other function of Y, then (S,T") contains at least as
much information as S, and is also sufficient. Hence S is not unique.

0 To deal with this we define a minimal sufficient statistic to be a function of any other sufficient
statistic. Such a ‘smallest sufficient statistic’ is unique up to 1-1 maps.

O To formalise this, note that
— any statistic 7' = ¢(Y") taking values ¢ € T partitions the sample space ) into equivalence
classes C; = {y/ € YV : t(y) = t};
— the partition C; corresponding to T is sufficient if and only if the distribution of Y within each
C; does not depend on 6; and

— a minimal sufficient statistic gives the coarsest possible sufficient partition.

0  We use the following results to identify (minimal) sufficient statistics.

Theorem 31 (Factorisation) A statistic S = s(Y) is sufficient for 6 in a model f(y;0) if and only if
there exist functions g and h such that f(y;0) = g{s(y); 0} x h(y).

Theorem 32 IfY ~ f(y;60) and S = s(Y') is such that log f(z;0) — log f(y;0) is free of 8 if and
only if s(z) = s(z), then S is minimal sufficient for 6.
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Note to Theorem 31

O The result is ‘if and only if', so we need to argue in both directions.

O If S is sufficient, then the factorisation
f(y;0) = f{s(y); 0} < f(y | s) = g{s(y); 0} x h(y)

holds.

[0 To prove the converse, suppose for simplicity of notation that Y is discrete and that there is a
factorisation. Then S has density

0= > g{s@)0hy) =g(s:0) > ),

y' eY:s(y')=s y' eY:s(y')=s
where the sum is in fact over ¢’ € Cs. Thus the conditional density of Y given S = s = s(y) is

o) = 9UsW):Oy) _ h(y)
f(y | ,9) = 9(8;0) Zy’ecs h(y’) - Zy’ecs h(y’)’

which does not depend on 6. Hence S is sufficient.

[0 The continuous case is similar, but the presence of a Jacobian makes the argument a bit messier.

stat.epfl.ch Autumn 2024 — note 1 of slide 79

51



Note to Theorem 32

0 We must show that that S is sufficient and that it is minimal.

(0 To show sufficiency, note that every y € ) lies in an element of the partition C; generated by the
possible values of S, and choose a representative dataset 3, € Cs for each s. For any y, y;(y) is in

the same equivalence set as y, so the ratio f(y; 9)/f(y;(y); 6) does not depend on 6, by the
premise of the theorem. Hence

F:0) = f(yy):0) x = g{s(y); 0} x h(y),

because y;(y) is a function of s(y). This factorisation shows that S = s(Y') is sufficient.

O To show minimality, if "= ¢(Y) is any other sufficient statistic the factorisation theorem gives

F(y;0) = g'{t(y); O} (y)
for some ¢’ and I/. If two datasets y and z are such that ¢t(y) = ¢(z), then

f(z;6) _ g {t(2);0}1 (2) _ B (z)
fy:0) g {t(y); 030/ (y) W (y)

does not depend on 6, and hence s(y) = s(z). This implies that

{zeY:ilz) =ty c{zeY:s(z) =y},

i.e., the partition generated by the values of S is coarser than that generated by the values of T,
and therefore it must be minimal.
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Examples
Example 33 (Uniform model) Discuss minimal sufficiency when Y1, ...,Y, Y U(0,0).

Example 34 (Location model) /fYy,...,Y, Y g(y — 0), with g a known continuous density, find a

sufficient statistic.
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Note to Example 33

O We already saw in Example 30 that M = max(Y7,...,Y,) is sufficient, so if U = min(Yy,...,Y,)
then clearly S = (U, M) is also sufficient. The partitions of the sample space ) = (0,0)"
corresponding to the statistics U, M and (U, M) have elements C, = {y € YV : u(y) = u},
Cm={y€Y:m(y) =m} and

Cu,m:{yey:u(y):u7m(y):m}7 0<u<m<é,

where for brevity we write y = (y1,...,yn); C, contains all the samples that have minimum w, for
example. Notice that the same partition C,, would arise if we replaced u by a 1-1 function g(u).

[0 Sketch the partitions on the board!

0 We already saw that the density of (Y7,...,Y},) given that M = m, i.e., the conditional density of
Y =y inside C,,, is the density of n — 1 independent U(0,m) variables, which does not depend on
6, so the partition {C,, : 0 < m < 0} is sufficient. Obviously this is also true of
{Cum : 0 <u<m< 0}

O The density of U is given by differentiation of P(U < u)=1— (1 —u/0)", for 0 <u <0, i.e.,
n0~1(1 —u/0)"! for 0 < u < 0, so the conditional density of Y7,...,Y,, given U is

07"I(0 <m < 0) 1

n0(1—u/0) 10 <u<0) n(f—unr! 0<u<m<b),

which depends on 6. Hence the partition {C, : 0 < u < 6} is not sufficient.

00 In the calculation below we set 0/0 = 1. To show that M is minimal sufficient, note that if we
have two samples y1,...,y, and z1,..., z,, then (in an obvious notation)
f(z:0)  07"I(0<m, <)
fy;0)  07"I(0<my<8)’

which is independent of 6 iff n = n’ and m, = m., i.e., the samples have the same size and the
same maxima. Since we usually take the size as non-random (for reasons seen later), the sample
maximum is minimal sufficient for 6.
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Note to Example 34

00 The density g is continuous, so all the y; are distinct with probability one. The joint density is

therefore
n n
F0) =]9wi—0) =n'T]9ws) —0), vy <+ <yw),
j=1 j=1
where s = (y(1),---,Y(n)) are the sample order statistics. The labels on the original data are
simply a permutation of the n labels on the order statistics, but the values are the same, so
fy:0) 1
79 = = € )
where s is the set of permutations of (y1,...,y,) with order statistics s; clearly |V | = n!,
because there are no ties.
O To show minimality, take another sample z1,..., 2z, and note that

f(z0) _ H?:l 9(z — 0)
fy;0)  Ilj=19(y; —0)

which (for general g) is free of 0 only if the y; are a permutation of the z;, and this occurs only if
the order statistics of the samples are the same.

[0 Here |s| = n in general. In special cases (e.g., the normal density) there is a minimal sufficient
statistic of lower dimension.
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Using sufficiency: Rao—Blackwell theorem

Theorem 35 (Rao-Blackwell) /f@ is an unbiased estimator of a parameter 0 of a statistical model
f(y;0) and if S = s(Y) is sufficient for 6, then T =E(6 | S) is also unbiased, and var(T') < var().

Example 36 (Exponential family) Find a minimal sufficient statistic for @ based on a random
sample Y1,...,Y, from a (d,d) exponential family. If d =1 and s(Y) =Y, find a better unbiased
estimator of yu = E(Y1) than Y.

0 The Rao—Blackwell theorem is non-asymptotic: it holds for any n.

[0 The process of getting a better estimator, Rao—Blackwellization, is useful in many contexts
(e.g., as a variance reduction technique in MCMC estimation).
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Note to Theorem 35

[0 We must show that that 7T is a statistic, that it is unbiased, and that it has smaller variance than .
O We have

~ Rl 9) = / 6y)f(y | 5)dy,

which does not depend on 6 by sufficiency of S, so T is indeed a statistic.

/{/0 fly|s) dy}f(s&ds—/@ y;0)dy =0,
by unbiasedness of 6.

O Finally we write §# —9 =0 — T +T — 0 = A+ B, say, and note that E(4 | S) = E(B) =0, so

O Moreover

cov(4, B) = EsEy|s(AB) = Eg { BEy|5(A | S)} = Es(B0) =0,
and thus
var(f) = var(A + B) = var(A) + var(B) = var(f — T) 4 var(T) > var(T),

with equality iff E{(T — 0)2} = 0, i.e., T and 6 are equal almost everywhere.

stat.epfl.ch Autumn 2024 — note 1 of slide 81

Note to Example 36

O The log joint density is

n

> log f(y;:6) = Y [logm(y;) + s7o(8) — nk{p(6)}] = s"p(6) — nk{e(9)}, €0,
j=1

=1

so s =y s(y;) is sufficient. It is also minimal, because

Zlog f(z5:60) — Zlogf(yﬁ@)
e j=1

does not depend on 6 iff >~ s(y;) = >_ s(z;) (and n =m).
O To find the unbiased estimator we argue by symmetry: clearly E(Y; | S) =--- = E(Y,, | S)
because S is symmetric in the Y; and the latter were IID. Hence

Yl\S—n_leY\S (121/5) E(S|S) =

7=1

and clearly var(S) = var(Y1)/n.

stat.epfl.ch Autumn 2024 — note 2 of slide 81

55



Complete statistics

O

0

Example 37 Show that the maximum of a uniform sample is complete, and hence find the unique
minimum variance unbiased estimator of 6.

Theorem 38 (No proof) The minimal sufficient statistic in a (d,d) exponential family (i.e., one for
which the parameter space contains an open d-dimensional set) is complete.

If we have numerous unbiased estimators, all of which could be improved, then we would like to
find the best.

To force uniqueness we introduce completeness: a statistic S (or its density) is complete if for
any function h,

E{h(S)} =0 forall § = h(s) =0,
and S is boundedly complete if this is true provided h is bounded.

If S is complete, then two unbiased estimators based on S satisfy

E{01(S) — 02(S)} =0 forall 0,

so by completeness 0, (S) = 65(S) is unique.
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Note to Example 37

0

The density of M is of the form
f(m;0) =a(m)b(0)I(0<m <), 0<m<¥b, 6>0,

where a(m) = nm™ ! and b(f) = §~™, so suppose for a contradiction that there exists a function
h for which h(m) # 0 but

0 0
0=E{h(M)} = /0 a(m)b(@)h(m) dm /0 a(m)h(m)dm, 6> 0.

The integral here equals zero for all 8 so its derivative a(0)h(60) with respect to # must be zero.
However, a(m) # 0, so h(#) = 0 for all § > 0, which is a contradiction. Hence M is complete.

For the unbiased estimator, we note that E(M) = nf/(n + 1), so § = (n + 1)M/n is unbiased
and must therefore be the unique minimum variance unbiased estimator of 6.
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Using sufficiency: Eliminating nuisance parameters

Sometimes the removal of nuisance parameters can be based on the following results.

Lemma 39 /In a statistical model f(y; 1, \) let Wy, be (minimal) sufficient for X when 1) is regarded
as fixed. Then the conditional density f(y | wy;) depends only on ). This holds in particular if W,
does not depend on 1.

Lemma 40 /n a (d,d) exponential family in which p(6) = (¢, \) and s = (t,w) is partitioned
conformally with o, the conditional density of T' given W = w®° is an exponential family that depends
only on .

Example 41 (2 x 2 table) Apply Lemma 40 to the 2 x 2 table

Success Failure Total
Treated Ry m1 — Ry mi
Control Ry mgy — Rg mo

Total Ri+Ry mg+mi—Ri— Ry mi+mg

where Ry ~ B(mg,m,) and Ry ~ B(my,m) are taken to be independent.
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Note to Lemma 39
If 1) is regarded as fixed, then we can write
Fys, A) = flwyi, A) x fy | wg; ),
where the rightmost term is free of A, with logarithm
log f(y; ¥, A) — log f(wy; ¥, A).
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Note to Lemma 40

In the discrete case, let > denote the sum over the set {y : w = w°} and note that
F@®s, ) = > m*(y) exp{t"y +w” A — k(p)}

= exp{wA—k(p }Zm y) exp (t" 1)

SO

m*(y) exp {t"Y + w" A — k(p)}
exp {woTA — k(p)} >, m*(y) exp(tT)

= m*( )exp{ lome exp tT )}
= m*(y) exp {tTY — k(¢;w°)},

say, where the cumulant generator for the conditional density depends on w®. This is the announced
exponential family.

flt]wep) =
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Note to Example 41

[0 A 2 x 2 table arises when m; individuals are allocated to a treatment and my are allocated to a
control. Responses from all individuals are independent and are binary with values 0/1, so the
total number of successes for the control group Ry ~ B(myg,m) is independent of those for the
treatment group, Ry ~ B(mq,7m1). Thus mg and my are considered to be fixed, and Ry and R;
as random.

OO A number of parameters might be of interest, but most commonly ) is taken to be the difference
in log odds of success and A the log odds of success in the control group, i.e.,

7T1(1 — 7T0)
7T0(1 — 7T1)

¥ = log{m /(1 — m)} — log{mo/(1 — m)} = log { } L A= log{mo/(1 — o)},

giving

B e B et

T 1ty T Iy
The joint density of the data reduces to

Y+(ro+r1)A
mo\ _ro mo—r mi\ mi—r my my e’
1 _ 0 0 1 _ 1 1 —
<r0>m (1 —mo) X <T1>7T1 (1—m) <r0><r1>(1+e>‘)m0(1+6)‘+¢)m1’

which is a (2,2) exponential family with ¢ = (¢, A), s = (r1,70 + 1), and

m*(y) = <m°> <m1> k() = —mplog (1 + e>‘) — my log (1 + e>‘+w) .

To T

0 v, A eR.

0 Lemma 40 implies that conditioning on W = Ry + Ry will eliminate A. Now

T+ ryp+wA
P(W:w):2<m0><m1> L
= \w—r/\ 1 ) (1+er)mo(l+erv)m
where r_ = max(0, w — mg), 7+ = min(w, m1), so the conditional density of 7' = R; given
W = Ry + Ry = w is the non-central hypergeometric density
() ()
P(T=t|W=w;¢) = Wt L , ted{r_, ... r }
2t () (e
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Ancillary statistics

[0 Sometimes we can write a minimal sufficient statistic as S = (7', A) where A =a(Y") is an
ancillary statistic, defined as a function of the minimal sufficient statistic whose distribution does
not depend on the parameter. Then

Iy 0) = fyis(y | 8)fs(s:0) = fys(y | 8) x fra(t | a;0) x fa(a),

and inference on 6 is based on the second term only, with A considered as fixing the reference set
S used in repeated sampling inference.

[0 A distribution-constant statistic is one whose distribution does not depend on the parameter.

O An ancillary statistic is distribution-constant, but the converse may not be true.

Example 42 (Sample size) IfYi,..., Yy S f(y;8), with the sample size N stemming from a
random mechanism, then clearly the most general sufficient statistic is (Y1,...,Yn, N). If the

distribution of N that does not depend on 6, however,

fly,n;0) = fy | n;0)f H F(y;30) x f(n),

so N is ancillary for 6, and we should use the reference set consisting of vectors y1,. .., Yy, of length n.
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Ancillary statistics Il

Example 43 (Regression) In a regression setting a response vector Yy,»1 depends on a matrix X, x,
of covariates. If their joint density factorises as f(y | x;1)f(x), so that the interest parameters 1) only
appear in the first term, then we should treat the X matrix as fixed, even if (Y, X) are actually
sampled from some distribution.

Example 44 (Location model) Show that writing
T:Yv(l)a A:(07YV(2)_Yv(l)a"wyv(n)—yv(l)%
leads to inference based on the conditional density

[Tj—19(t — 6 +a))
J 1= 9w+ aj) du’

ft|a;0)=

Theorem 45 (Basu) A complete minimal sufficient statistic is independent of any
distribution-constant statistic.
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Note to Example 44

O Write yg = yy;) for simplicity of notation, and note that
yi=t Y=yt —y)=t+a, j=2,...,n,

so the Jacobian for the transformation is

111 1

0 1 0
OWhotn) g 0 =1
a(t,ag,...,an) ’

000 -~ 1

and thus (setting a; = 0 for simplicity) the density of the configuration A is

fA(a):/Hg(t+aj—H)dt:/Hg(u+aj)du,
j=1 j=1

where we put © =t — 6 in the second integral. We see that Q =T — 0 is a pivot, because

T, g(u + a;) du
P(ng’A:a):P(T_Héq’A:a):ffl_H[g11;(;:aj']))du’

and using the quantiles g,/2(a) and q;_q/2(a) will give conditional confidence limits.

O Assessment of model fit (i.e., of g) can be based on QQ plots of the values of a. We are familiar
with this in regression problems.
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Note to Theorem 45

(0 In the discrete case, note that for any ¢ and 6, the marginal density of C' may be written using the
sufficient statistic S as

fole) = feys(el s)fs(s:0),

so for all 8 we have

> {fele) = feysle | $)}fs(s;0) =0,

and completeness of S implies that fo(c) = feis(c| s) for every c and s, ie., C 1L S.

[0 The argument in the continuous case is analogous.
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2.4 Inference slide 86

‘Ideal’ frequentist inference

[0 Frequentist recipe for inference on an interest parameter 1
— find the likelihood function for the data Y;
— find a sufficient statistic S = s(Y") of the same dimension as 6;
— eliminate any nuisance parameters \;
— find a function T of S whose distribution depends only on 1);
— use the distribution of T" (conditioned on any ancillary statistics) for inference (confidence
limits/tests) for 1;
—  (use the conditional distribution of Y given S to assess model adequacy).
0 For inference note that if T is continuous with distribution F', observed value ¢t° and the true value
of v is 1)y, then
F(T;0) ~U(0,1) is a pivot,
so confidence limits for v are given by inverting it, i.e., solving F(t°;1,) = « for appropriate
values of a.
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Note: Why is F(T';1g) uniform?
O  Write Fy(t) = P(T < t;1y), and note if T' ~ Fy, then

P{Fy(T) <u} =P{T < F; ' (u)} = Fo{Fy '(w)} =u, O0<u<l,

i.e., Fy(T) ~U(0,1) is a pivot, because it depends on the data (through T), the parameter 1)y,
and has a known distribution.

O  This argument holds for any continuous 7', but is only approximate if T is discrete (e.g., has a
Poisson distribution). In such cases Fy(T') can only take a finite or countable number of values
that give the achievable confidence levels.
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Significance functions

O It is useful to plot the P-value (or significance) function
p() = P(T > 1) = 1 — F(t% ) against .
O As Fyo(T) ~ U(0,1) when 1 = 1), we regard values of ) for which p(v)) is too extreme as
incompatible with ¢°, leading to the (two-sided) (1 — «) confidence set
{Y:a/2<p(¢) <1-a/2},

or to using p(1g) as the P-value for a test of Hy : ¢ = 1)y against Hy : b > 1)g.
0 Equivalent functions include

— the confidence function 1 — p(v);

— the modified confidence function max{p(¢),1 — p(¥)}; and

— a pivot function showing how a (standard normal) pivot varies with 1.
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Significance and related functions
Confidence function
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Examples

random sample with known variance.

sample.

Example 46 (Normal sample) Apply the recipe above to inference for the mean of a normal

Example 47 (Uniform sample) Apply the recipe above to inference for the upper limit of a uniform

Example 48 (2 x 2 table) Apply the recipe above to the 2 x 2 table.
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Note to Example 46

[0 Here the significance function is

[0 Suppose that Yi,....Y, id N (1, 1). Thisis a (1,1) exponential Emily, SO tﬁe minimal sufficient
statisticis S =Y ~ N (¢,1/n), and clearly we should take T' =Y, so /n(Y — ¢) ~ N(0,1).

p(¥) = P(T > 1% 9) = 1 = o{n"*(F° — v)} = o{n' (¥ - 7°)},

and solving this for p(¢4) = « gives nl/Q(q/)a
familiar (1 — «) confidence interval (L, U) with observed value

—T°) = Za, i€, o = T° +n"22,, leading to the

(yo + nil/zza/% yo + nil/Qzlfaﬂ)'

[0 For the model assessment step we could note that as S = Y is a complete minimal sufficient
statistic, the distribution-constant statistic C' = (Y1 —Y,...,Y,, — Y) is independent of Y (by
Basu's theorem), and therefore plots and tests of the suitability of the model would be based on C'.
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Note to Example 47

We have already seen that M is minimal sufficient and that its distribution P(M < z) = (x/0)", for
0 < z < 0, depends only on 6. Hence the corresponding significance function based on an observed m°

would be
p(#) =1—(m°/0)" 0 >m°,

from which we read off the limits using the equation o = 1 — (m°/6,)", i.e., 6o = m°(1 — a)~ /",
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Note to Example 48
O In this case
L
P(T<t|W=w;vy) = R , tef{r_,. . ry},
2 S (e
and we can vary 9 to (numerically) solve
P(T<t|W =w;9,) =,
thus giving limits for confidence intervals (approximate because the model is discrete).
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Comments

[0 The essence of the recipe on slide 87 is to base an exact pivot @ = ¢(Y’;¢) on a minimal sufficient
statistic and use the significance (or p-value) function

P{q(Y;¢) < g}, pe€(0,1)

to invert () and thus make inference on v using the quantiles g, of Q.
(0 The difficulties are that:

— finding the sufficient statistic and a function of it that depend exactly only on 1) are typically
possible only in simple models;

— finding the exact distribution of the pivot may be difficult; and
— assessment of model fit using the conditional distribution is difficult in general.

O Nevertheless the recipe suggests how to proceed in more general settings, by basing approximate
pivots on likelihood-based statistics, which will automatically depend on the minimal sufficient
statistic.
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